1. High resolution Brillouin light scattering

Measurement of the sound velocity and the attenuation of elastic waves (LA, TA) in the GHz frequency range.

\[\nu_B = \frac{2}{\lambda_0} \text{sound velocity} \]

High resolution and accuracy

\[\nu_B = \frac{2\Gamma}{\Delta \nu} \text{sound attenuation} \]

\[\Delta \nu \rightarrow \text{linewidth resolution} \sim 15 \text{ Mhz} \]

Internal friction

\[Q^{-1} = \Delta \Gamma \]

The High Resolution Spectrometer

- Plane Fabry-Perot (FFP)
 - Free spectral range (FSR) - 100 GHz
 - Calibrated by a reference beam produced by electro-optic modulation of the laser ray (\(\nu \pm \nu_i \))
 - \(\nu_i \) fixed at \(\nu_B \)

- Spherical Fabry-Perot (SFP)
 - FSR ~ 100 GHz
 - Calibration with the reference beam

Serie 2

- Density dependence of the measured Brillouin shift for silica \(\Delta \nu \rightarrow \text{expected thickness effect} \)

Serie 1

- Density dependence of the measured Brillouin shift for silica \(\Delta \nu \rightarrow \text{samples are not homogeneous in density} \)

Density dependence of the measured Brillouin shift for silica

- diamond anvil cell technique (DAC)
 - high pressure/high temperature in-situ experiments:
 - measurement of the sound velocity and the attenuation of elastic waves (LA, TA) in the GHz frequency range.
 - Brillouin frequency shift \(\nu_B \)
 - elastic constants
 - bulk modulus
 - poisson's ratio
 - spectral width
 - natural linewidth \(\Delta \Gamma \)

Difficulties

1. Finite size effects
2. Low signal luminosity improvement

Prospective

- in-situ characterization of densification in function of \(P \) and \(T \)

Perspectives

- in-situ characterization of densification in function of \(P \) and \(T \)

2. Permanently densified silica \(d-SiO_2 \)

Permanently densified silica \(d-SiO_2 \) is obtained by submitting short cylinders of \(v-SiO_2 \) to high pressure \(P \) (quasihydrostatic) at elevated temperature \(T \). Different densities were achieved by varying the duration of the treatment.

We studied two series of densified silica samples:

- **Heraeus Suprasil F300**; \(\leq 1 \text{ppm [OH]} \)
 - \(P \approx 8 \text{GPa}, T \approx 700 \degree C \)
 - \{ M. Arai, Tsukuba, Japan \}

- **Saint Gobain quartz IDD**; \(\leq 150 \text{ ppm [OH]} \)
 - \{ D. Vandembroucq, SGR-CNRS, Aubervilliers, France \}

Density dependence of the measured Brillouin shift for silica

- high constrast \(C \approx 10^2 \)

Focusing spot

- \(100 \mu m \)

Serie 2

- Big sample from M. Arai \(\approx 1 \text{ cm}^3 \)
 - \(\Delta \nu = 2,55 \text{ g/cm}^3 \)
 - \(\rho = 2,60 \text{ g/cm}^3 \)

- SMALL sample from M. Arai
 - \(-2 \times 2 \times 4 \text{ mm} \)
 - \(\rho = 2,6 \text{g/cm}^3 \)

Serie 3

- Samples from D. Vandembroucq
 - \(3 \text{ disks of } d-SiO_2 \) \((2.59-2.61 \text{ g/cm}^3) \)
 - embedded in resin (\(\Phi \sim 3 \text{ mm})

- samples are not homogeneous in density: we measured variations of density around 0.01 g/cm\(^3\) in each \(d-SiO_2 \) samples.